Свойства треугольника. Решение задач. Готовимся к ЕГЭ по математике. Геометрия. Урок 12
Задача 3. В треугольнике стороны , высота равна 6,(см. рис. 8). Найдите угол . Ответ дайте в градусах.
Читать далее...Решебники, гдз, ответы к сборникам задач, учебникам и рабочим тетрадям по математике
Видеокурс подготовки к ЕГЭ по математике. Решения задач ЕГЭ по математике. Решения КИМов ЕГЭ по математике. Курс подготовки к ОГЭ по математике. Решения КИМов ОГЭ по математике в режиме онлайн
Задача 3. В треугольнике стороны , высота равна 6,(см. рис. 8). Найдите угол . Ответ дайте в градусах.
Читать далее...Сумма длин трёх сторон треугольника называется его периметром. . Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника. Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника.
Читать далее...Пусть точки и имеют координаты . Координаты вектора вычисляются по формуле Длина вектора, или модуль вектора
Читать далее...Отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом, называется вектором. Вектор характеризуется модулем (длиной отрезка) и направлением. Два вектора, имеющие одинаковые модули и направления, равны.
Читать далее...Задача 3. Найдите ординату середины отрезка, соединяющего точки и (см. рис. 6).
Читать далее...Рассмотрим прямоугольную систему координат (см. рис. 1). Длина отрезка , для которого известны координаты его концов и , определяется по формуле
Читать далее...Вы не можете скопировать содержимое этой страницы