Исследование функции на экстремум (примеры). Практикум по математическому анализу. Урок 53

Исследование функции на экстремум (примеры). Практикум по математическому анализу. Урок 53

Примеры. Исследовать на максимум и минимум функции: 1) ; 2) ; 3) ; 4) ; 5) ; 6) . Решение. 1) Согласно правилу исследования функции на экстремум: I. Находим производную: и критические точки. Полагая , получим . Функция определена и непрерывна на всей числовой оси. Поэтому точки и являются критическими.

Читать далее...
Максимум и минимум (экстремум) функции. Практикум по математическому анализу. Урок 52

Максимум и минимум (экстремум) функции. Практикум по математическому анализу. Урок 52

Значение функции в точке называется максимумом (минимумом), если оно является наибольшим (наименьшим) по сравнению с ее значениями во всех достаточно близких точках слева и справа от . Функция может иметь экстремум (максимум или минимум) только в тех точках, которые лежат внутри области определения функции и где ее производная равна нулю …

Читать далее...
Возрастание и убывание функции. Практикум по математическому анализу. Урок 51

Возрастание и убывание функции. Практикум по математическому анализу. Урок 51

При изучении поведения функции в зависимости от изменения независимой переменной обычно предполагается, что во всей области определения функции независимая переменная изменяется монотонно возрастая, т. е. что каждое следующее ее значение больше предыдущего. Если при этом последовательные значения функции также возрастают, то и функция называется возрастающей, а если они убывают, то …

Читать далее...
Правило Лопиталя и его применение (окончание). Практикум по математическому анализу. Урок 50

Правило Лопиталя и его применение (окончание). Практикум по математическому анализу. Урок 50

Рассмотрим еще несколько случаев нахождения предела: 5) — когда функция представляет степень, основание которой стремится к единице, а показатель — к бесконечности; 6) — когда функция представляет степень, основание которой стремится к бесконечности, а показатель — к нулю; 7) — когда функция представляет степень, основание и показатель которой стремятся к …

Читать далее...
Правило Лопиталя и его применение (продолжение). Практикум по математическому анализу. Урок 49

Правило Лопиталя и его применение (продолжение). Практикум по математическому анализу. Урок 49

Рассмотрим еще несколько случаев нахождения предела: 3) — когда функция представляет произведение бесконечно малой величины на бесконечно большую; 4) — когда функция представляет разность двух положительных бесконечно больших величин. Эти случаи нахождения предела функции сводятся к случаям или путем преобразования функции к виду дроби.

Читать далее...
Правило Лопиталя и его применение. Практикум по математическому анализу. Урок 48

Правило Лопиталя и его применение. Практикум по математическому анализу. Урок 48

В задачах на вычисление пределов функций (уроки №14-19) были разъяснены элементарные способы нахождения предела функции в тех случаях, когда аргумент неограниченно возрастает или стремится к значению, которое не входит в область определения функции. Кроме этих элементарных способов, весьма эффективным средством для нахождения предела функции в указанных особых случаях является следующее …

Читать далее...